Click the button below to see similar posts for other categories

What Tricks Can Help You Remember How to Simplify Ratios Quickly?

When you're in Year 7 Maths, learning how to simplify ratios can be fun and easy! Here are some tricks to help you understand better.

What is a Ratio?

First, let’s talk about what a ratio is. A ratio compares two or more things. For example, if you have 2 apples and 3 oranges, you can say the ratio of apples to oranges is 2:3. But how do we make this ratio simpler? Let’s find out!

Trick #1: Divide by the Biggest Number

One quick way to simplify a ratio is to find the Biggest Common Factor (GCF) of the two numbers. The GCF is the largest number that can divide both without any leftovers.

Example:

Let's simplify the ratio 12:16.

  1. First, find the GCF of 12 and 16. The GCF is 4.
  2. Now, divide both numbers by the GCF:
    • 12 ÷ 4 = 3
    • 16 ÷ 4 = 4
  3. So, the simplified ratio becomes 3:4.

Trick #2: Use Easy Multipliers

If the numbers are small, you can just use simple multipliers. Check if one number can divide the other easily.

Example:

For the ratio 8:12, notice both numbers can be divided by 4.

  • 8 ÷ 4 = 2
  • 12 ÷ 4 = 3 So, 8:12 simplifies to 2:3.

Trick #3: Check for Equivalent Ratios

Sometimes, it's helpful to find ratios that mean the same thing. You can multiply or divide both parts of the ratio by the same number.

Example:

If you start with the ratio 1:2 and multiply both sides by 3, you get 3:6. Both of these ratios are equivalent because they show the same relationship.

Trick #4: Think of Ratios as Fractions

Another good way to understand ratios is to see them as fractions. For the ratio 3:5, think of it as 3/5. If the fraction is already in its simplest form, then so is the ratio!

Practice Makes Perfect

The best way to get better at simplifying ratios is to practice! Try different problems and use these tricks each time. Soon, simplifying ratios will feel really easy!

With these tips, simplifying ratios will be a piece of cake. Happy calculating!

Related articles

Similar Categories
Number Operations for Grade 9 Algebra ILinear Equations for Grade 9 Algebra IQuadratic Equations for Grade 9 Algebra IFunctions for Grade 9 Algebra IBasic Geometric Shapes for Grade 9 GeometrySimilarity and Congruence for Grade 9 GeometryPythagorean Theorem for Grade 9 GeometrySurface Area and Volume for Grade 9 GeometryIntroduction to Functions for Grade 9 Pre-CalculusBasic Trigonometry for Grade 9 Pre-CalculusIntroduction to Limits for Grade 9 Pre-CalculusLinear Equations for Grade 10 Algebra IFactoring Polynomials for Grade 10 Algebra IQuadratic Equations for Grade 10 Algebra ITriangle Properties for Grade 10 GeometryCircles and Their Properties for Grade 10 GeometryFunctions for Grade 10 Algebra IISequences and Series for Grade 10 Pre-CalculusIntroduction to Trigonometry for Grade 10 Pre-CalculusAlgebra I Concepts for Grade 11Geometry Applications for Grade 11Algebra II Functions for Grade 11Pre-Calculus Concepts for Grade 11Introduction to Calculus for Grade 11Linear Equations for Grade 12 Algebra IFunctions for Grade 12 Algebra ITriangle Properties for Grade 12 GeometryCircles and Their Properties for Grade 12 GeometryPolynomials for Grade 12 Algebra IIComplex Numbers for Grade 12 Algebra IITrigonometric Functions for Grade 12 Pre-CalculusSequences and Series for Grade 12 Pre-CalculusDerivatives for Grade 12 CalculusIntegrals for Grade 12 CalculusAdvanced Derivatives for Grade 12 AP Calculus ABArea Under Curves for Grade 12 AP Calculus ABNumber Operations for Year 7 MathematicsFractions, Decimals, and Percentages for Year 7 MathematicsIntroduction to Algebra for Year 7 MathematicsProperties of Shapes for Year 7 MathematicsMeasurement for Year 7 MathematicsUnderstanding Angles for Year 7 MathematicsIntroduction to Statistics for Year 7 MathematicsBasic Probability for Year 7 MathematicsRatio and Proportion for Year 7 MathematicsUnderstanding Time for Year 7 MathematicsAlgebraic Expressions for Year 8 MathematicsSolving Linear Equations for Year 8 MathematicsQuadratic Equations for Year 8 MathematicsGraphs of Functions for Year 8 MathematicsTransformations for Year 8 MathematicsData Handling for Year 8 MathematicsAdvanced Probability for Year 9 MathematicsSequences and Series for Year 9 MathematicsComplex Numbers for Year 9 MathematicsCalculus Fundamentals for Year 9 MathematicsAlgebraic Expressions for Year 10 Mathematics (GCSE Year 1)Solving Linear Equations for Year 10 Mathematics (GCSE Year 1)Quadratic Equations for Year 10 Mathematics (GCSE Year 1)Graphs of Functions for Year 10 Mathematics (GCSE Year 1)Transformations for Year 10 Mathematics (GCSE Year 1)Data Handling for Year 10 Mathematics (GCSE Year 1)Ratios and Proportions for Year 10 Mathematics (GCSE Year 1)Algebraic Expressions for Year 11 Mathematics (GCSE Year 2)Solving Linear Equations for Year 11 Mathematics (GCSE Year 2)Quadratic Equations for Year 11 Mathematics (GCSE Year 2)Graphs of Functions for Year 11 Mathematics (GCSE Year 2)Data Handling for Year 11 Mathematics (GCSE Year 2)Ratios and Proportions for Year 11 Mathematics (GCSE Year 2)Introduction to Algebra for Year 12 Mathematics (AS-Level)Trigonometric Ratios for Year 12 Mathematics (AS-Level)Calculus Fundamentals for Year 12 Mathematics (AS-Level)Graphs of Functions for Year 12 Mathematics (AS-Level)Statistics for Year 12 Mathematics (AS-Level)Further Calculus for Year 13 Mathematics (A-Level)Statistics and Probability for Year 13 Mathematics (A-Level)Further Statistics for Year 13 Mathematics (A-Level)Complex Numbers for Year 13 Mathematics (A-Level)Advanced Algebra for Year 13 Mathematics (A-Level)Number Operations for Year 7 MathematicsFractions and Decimals for Year 7 MathematicsAlgebraic Expressions for Year 7 MathematicsGeometric Shapes for Year 7 MathematicsMeasurement for Year 7 MathematicsStatistical Concepts for Year 7 MathematicsProbability for Year 7 MathematicsProblems with Ratios for Year 7 MathematicsNumber Operations for Year 8 MathematicsFractions and Decimals for Year 8 MathematicsAlgebraic Expressions for Year 8 MathematicsGeometric Shapes for Year 8 MathematicsMeasurement for Year 8 MathematicsStatistical Concepts for Year 8 MathematicsProbability for Year 8 MathematicsProblems with Ratios for Year 8 MathematicsNumber Operations for Year 9 MathematicsFractions, Decimals, and Percentages for Year 9 MathematicsAlgebraic Expressions for Year 9 MathematicsGeometric Shapes for Year 9 MathematicsMeasurement for Year 9 MathematicsStatistical Concepts for Year 9 MathematicsProbability for Year 9 MathematicsProblems with Ratios for Year 9 MathematicsNumber Operations for Gymnasium Year 1 MathematicsFractions and Decimals for Gymnasium Year 1 MathematicsAlgebra for Gymnasium Year 1 MathematicsGeometry for Gymnasium Year 1 MathematicsStatistics for Gymnasium Year 1 MathematicsProbability for Gymnasium Year 1 MathematicsAdvanced Algebra for Gymnasium Year 2 MathematicsStatistics and Probability for Gymnasium Year 2 MathematicsGeometry and Trigonometry for Gymnasium Year 2 MathematicsAdvanced Algebra for Gymnasium Year 3 MathematicsStatistics and Probability for Gymnasium Year 3 MathematicsGeometry for Gymnasium Year 3 Mathematics
Click HERE to see similar posts for other categories

What Tricks Can Help You Remember How to Simplify Ratios Quickly?

When you're in Year 7 Maths, learning how to simplify ratios can be fun and easy! Here are some tricks to help you understand better.

What is a Ratio?

First, let’s talk about what a ratio is. A ratio compares two or more things. For example, if you have 2 apples and 3 oranges, you can say the ratio of apples to oranges is 2:3. But how do we make this ratio simpler? Let’s find out!

Trick #1: Divide by the Biggest Number

One quick way to simplify a ratio is to find the Biggest Common Factor (GCF) of the two numbers. The GCF is the largest number that can divide both without any leftovers.

Example:

Let's simplify the ratio 12:16.

  1. First, find the GCF of 12 and 16. The GCF is 4.
  2. Now, divide both numbers by the GCF:
    • 12 ÷ 4 = 3
    • 16 ÷ 4 = 4
  3. So, the simplified ratio becomes 3:4.

Trick #2: Use Easy Multipliers

If the numbers are small, you can just use simple multipliers. Check if one number can divide the other easily.

Example:

For the ratio 8:12, notice both numbers can be divided by 4.

  • 8 ÷ 4 = 2
  • 12 ÷ 4 = 3 So, 8:12 simplifies to 2:3.

Trick #3: Check for Equivalent Ratios

Sometimes, it's helpful to find ratios that mean the same thing. You can multiply or divide both parts of the ratio by the same number.

Example:

If you start with the ratio 1:2 and multiply both sides by 3, you get 3:6. Both of these ratios are equivalent because they show the same relationship.

Trick #4: Think of Ratios as Fractions

Another good way to understand ratios is to see them as fractions. For the ratio 3:5, think of it as 3/5. If the fraction is already in its simplest form, then so is the ratio!

Practice Makes Perfect

The best way to get better at simplifying ratios is to practice! Try different problems and use these tricks each time. Soon, simplifying ratios will feel really easy!

With these tips, simplifying ratios will be a piece of cake. Happy calculating!

Related articles